ИССЛЕДОВАНИЕ МЕТОДОВ СНИЖЕНИЯ ТОЛЩИННОЙ ДЕФОРМАЦИИ СТЕНКИ ТРУБЧАТЫХ ЗАГОТОВОК В ПРОЦЕССЕ ГИБКИ ОБКАТКОЙ

Смертин С.А.

ассистент,

Вятский государственный университет,

Россия, Киров

Земцов М.И.

к.т.н., доцент,

Вятский государственный университет,

Россия, Киров

Фомина Д.А.

студент,

Вятский государственный университет,

Россия, Киров

Аннотация

В статье предложен способ изготовления тонкостенных деталей сложного профиля, состоящий из нескольких этапов, а также приведены результаты исследований и анализ методов интенсификации первого этапа предлагаемого способа - процесса гибки обкаткой.

Ключевые слова: тонкостенная деталь, гибка обкаткой, сечение, профиль, формообразование, толщинная деформация.

RESEARCH OF METHODS OF DECREASE OF THICKENING DEFORMATION OF A WALL OF TUBULAR WORK PIECES IN THE PROCESS OF BENDING BY RUNNING IN

Smertin S.A.

assistant,

Vyatka State University,

Russia, Kirov

Zemtsov M.I.

c.t.s., associate professor,

Vyatka State University,

Russia, Kirov

Fomina D.A.

student,

Vyatka State University,

Russia, Kirov

Annotation

The article offers a way of production of thin-walled details of complicated profile, consisting of several stages, and also gives results of researches and analysis of methods of intensification of the first stage of the offered way - process of bending by running in.

Key words: thin-walled detail, bending by running in, section, profile, forming, thickening deformation.

Производство качественных тонкостенных деталей, особенно сложных форм, является одной из важных проблем современной машиностроительной отрасли. К таким деталям можно отнести крутоизогнутые тонкостенные отводы, патрубки, в том числе с переменным профилем поперечного сечения.

В настоящее время существуют способы производства подобных изделий путем сварки их из деталей более простой формы. Таким образом можно изготовить изделия сложной формы, в том числе с переменным профилем поперечного сечения, но трудоемкость сварочной операции и сложность обеспечения герметичности сварного шва являются существенными недостатками данной технологии.

Также известны способы изготовления тонкостенных деталей цельной конструкции. В большинстве из них основной операцией является гибка тонкостенной трубы на требуемый угол. В качестве заготовок используются трубы с профилем поперечного сечения, соответствующим профилю сечения готового изделия. При этом операцию гибки можно производить с помощью ручных или механизированных трубогибов, a также В штампах. способов Преимуществом данных является относительная простота используемого оборудования, конструкции оснастки и недостатками трудности, связанные с ограниченной номенклатурой заготовок - стандартных труб требуемого профиля, а также сложность изготовления изделия с малым радиусом гиба.

Исключить недостатки существующих способов предлагается с помощью способа [1], состоящего из трех этапов: 1 – гибка стандартной трубчатой круглого поперечного сечения на требуемый угол; заготовки предварительное статическое деформирование изогнутой заготовки 3 формообразование полуматрицах; окончательное методом электрогидроимпульсной (ЭГИ) штамповки.

С целью апробации предлагаемого способа и определения деформационных и механических характеристик материала заготовки были проведены соответствующие экспериментальные исследования. В данной

статье приведены исследования первого этапа технологии — гибки тонкостенной трубы на требуемый угол. Гибка проводилась методом обкатки по схеме, приведенной на рис. 1, с использованием канифоли в качестве наполнителя. Для выполнения данной операции был спроектирован и изготовлен ручной трубогиб (рис. 2).

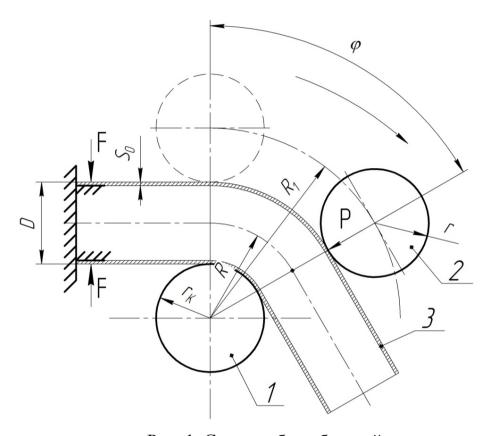


Рис. 1. Схема гибки обкаткой:

1 – неподвижный ролик (копир); 2 – обкатной ролик; 3 – заготовка

В качестве заготовок для операции гибки использовались трубы из меди М1 с наружным диаметром D=1 1/8''(28,575 мм) и толщиной стенки $S_0=0,87$ мм, как одни из применяемых для подобных изделий. Гибка производилась на угол $\varphi=90^{0}$ со следующими параметрами оснастки: радиус копира $r_{\kappa}=38$ мм, радиус обкатного ролика r=45 мм, радиус гибки по средней линии R=52,3 мм.

Деформированное состояние материала после гибки оценивалось в сечениях и точках, показанных на рис.4, путем измерения толщины стенки изогнутой трубы по наружному и внутреннему радиусам гиба. Измерения проводились с помощью стойки с индикатором часового типа модели ИЧ 10

МН. В указанных точках замерялась толщина стенки трубы и определялась толщиная деформация по формуле [2]:

$$\varepsilon_{s} = \ln \frac{s}{s_{0}},\tag{1}$$

где S_0 и S — толщина стенки соответственно исходной заготовки и заготовки после деформирования.

Рис. 2. Общий вид ручного трубогиба

В процессе гибки важно сохранить деформационную способность материала заготовки для последующих операций предлагаемой технологии. Наибольшему утонению подвергается материал на наружном радиусе гиба трубы (рис. 4). При гибке вследствие контакта, близкого к точечному, обкатного ролика со стенкой трубы возникает местная деформация, которая в дальнейшем распространяется по направлению движения ролика и влияет на суммарное утонение по наружному радиусу гиба. Величина местной деформации зависит от величины силы, действующей со стороны обкатного ролика на заготовку. С целью снижения действия данной силы был использован способ гибки обкаткой с зазором Z между обкатным роликом и заготовкой в начальном положении (рис. 3а). Зазор Z обеспечивается путем увеличения межосевого расстояния между неподвижным роликом - копиром и обкатным роликом, и приблизительно определяется по формуле [3]:

$$Z = 0.15 \cdot D, \tag{2}$$

 $Z = 0.15 \cdot 28.6 = 4.29$ мм. Принимается Z = 4.3 мм.

Радиус траектории обкатного ролика с учетом зазора определяется по формуле:

$$R_1 = r_{\rm K} + D + r + Z, \tag{3}$$

$$R_1 = 38 + 28,6 + 45 + 4,3 = 115,9 \ {\rm MM}. \ \Pi {\rm puhumaetcg} \ R_1 = 116 \ {\rm MM}.$$

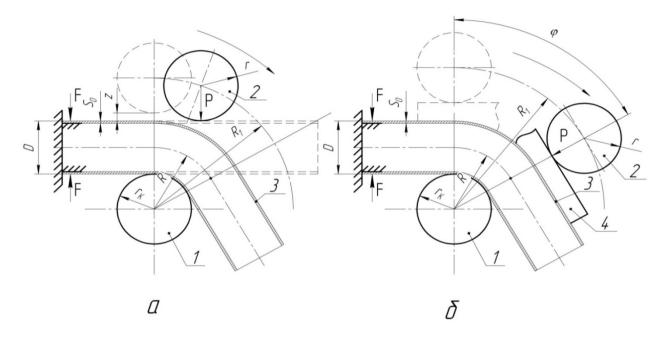


Рис. 3. Схемы гибки обкаткой: а – с зазором; б – с использованием лотка 1 – неподвижный ролик (копир); 2 – обкатной ролик; 3 – заготовка; 4 - лоток

С целью снижения утонения заготовки был использован способ, исключающий точечный контакт обкатного ролика с заготовкой, вызывающий местные деформации. Для этого между обкатным роликом 2 (рис. 3б) и заготовкой 3 устанавливался лоток 4, профиль внутренней поверхности которого соответствовал профилю изгибаемой трубы. С учетом высоты лотка также было изменено и межосевое расстояние между копиром и обкатным роликом.

У полученных данными способами гибки заготовок были проведены измерения толщины стенки по наружному и внутреннему радиусам гиба и определена толщинная деформация заготовок (рис. 4). Из приведенных на рисунке графиков следует, что максимальное значение утонения наблюдается

по наружному радиусу гиба при гибке без зазора между обкатным роликом и заготовкой в начальном положении, смещенное от середины угла гиба до точки 23, что соответствует углу, равному 75° . Вероятно, данное смещение произошло вследствие распространения по направлению гибки местной деформации, возникающей в результате точечного контакта обкатного ролика с заготовкой. Максимальное утонение соответствует величине толщинной деформации $\varepsilon_s = -0.28$. Гибка с зазором и гибка с применением лотка оказались одинаковыми по эффективности снижения утонения, в результате их применения удалось уменьшить толщинную деформацию до $\varepsilon_s = -0.25$, то есть приблизительно на 10.5%. После гибки с применением лотка максимальное значение утонения соответствует точке 18, расположенной практически в середине угла гиба. Это объясняется исключением точечного контакта обкатного ролика с заготовкой.

После гибки без зазора по внутреннему радиусу гиба наблюдается как утонение, так и утолщение, с преобладанием последнего. Максимальная величина толщинной деформации находится в точке 10 и составляет $\varepsilon_s = 0,02$. В результате операций гибки с зазором и гибки с применением лотка во всех точках по внутреннему радиусу наблюдается утолщение с максимальными значениями $\varepsilon_s = 0,06$ и $\varepsilon_s = 0,09$ соответственно.

На участках заготовки, не имеющих контакта с формообразующими элементами в процессе гибки, также наблюдаются изменения толщины стенки: закрепленный конец трубы подвержен деформации и в большей степени по наружному радиусу гиба в процессе гибки с использованием лотка. Деформация данного участка вызвана внутренними напряжениями продольном направлении, возникающими В материале вследствие возникновения сил трения между формообразующим элементом И поверхностью заготовки. В случае применения лотка площадь контакта заготовки с формообразующим элементом больше, соответственно больше и силы трения, а в итоге и деформация свободного участка.

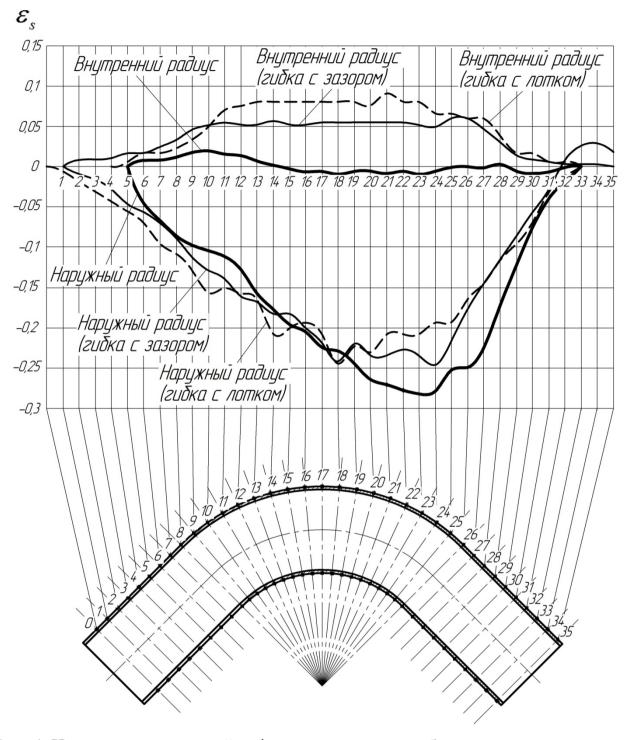


Рис. 4. Изменение толщинной деформации стенки трубы в продольном сечении для различных схем гибки

Итак, для реализации первого этапа предлагаемой технологии изготовления тонкостенных крутоизогнутых изделий выбран способ гибки обкаткой. Наличие зазора между обкатным роликом и заготовкой в начальном положении эффективно для снижения толщинной деформации заготовки. При

использовании данного приема в проведенных экспериментах толщинную деформацию удалось уменьшить на 10,5%. В такой же степени эффективно и применение лотка между обкатным роликом и заготовкой, но наличие лотка усложняет конструкцию трубогиба и возможность автоматизации процесса гибки.

Библиографический список:

- 1. Пат. № 2521167РФ, МПК 51 В 21D 9/08, 22/02, 26/12, 41/02. Способ изготовления крутоизогнутых тонкостенных труб заданного профиля / Смертин С.А., Земцов М.И.
- 2. Сторожев М.В. Теория обработки металлов давлением [Текст]: учеб. /М.В. Сторожев, Е.А. Попов. 4-е изд., доп.— М.: Машиностроение, 1977. 423 с.
- 3. Вдовин С.И. Теория и расчеты гибки труб: монография / С.И. Вдовин. М.: Машиностроение, Орел: ОрелГТУ, 2009. 95 с., ил.