УДК 544.169

DOI 10.51691/2541-8327_2022_8_2

ГИБРИДНЫЕ ОРГАНО-НЕОРГАНИЧЕСКИЕ НАНОКОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ НА ОСНОВЕ ПОЛИЭТИЛЕНА ВЫСОКОЙ ПЛОТНОСТИ И НАНОЧАСТИЦГИДРОКСИДА АЛЮМИНИЯ: ПОЛУЧЕНИЕ И СВОЙСТВА

Аржакова О.В.

к.х.н., доцент, ведущий научный сотрудник,

Московский государственный университет имени М.В. Ломоносова, химический факультет,

Россия, Москва

Копнов А.Ю.

Студент, 5 курс,

Московский государственный университет имени М.В. Ломоносова, химический факультет,

Россия, Москва

Ярышева А.Ю.

к.х.н., старший научный сотрудник,

Московский государственный университет имени М.В. Ломоносова, химический факультет,

Дневник науки | www.dnevniknauki.ru | СМИ ЭЛ № ФС 77-68405 ISSN 2541-8327

Россия, Москва

Долгова А.А.

к.х.н., старший научный сотрудник,

Московский государственный университет имени М.В. Ломоносова, химический факультет,

Россия, Москва

Аннотация

Получены гибридные органо-неорганические нанокомпозиционные материалы на основе полиэтилена высокой плотности и неорганического экологически безопасного антипирена гидроксида алюминия с использованием стратегии крейзинга полимеров. Предложены способы введения нитрата алюминия как прекурсора в мезопористые полимерные матрицы и определены условия *in situ* основного гидролиза соли алюминия в мезопорах полиэтилена высокой плотности. Показано, что в результате гидролиза нитрата алюминия происходит формирование наночастиц гидроксида алюминия игольчатой формы, равномерно объеме полимерной матрицы. Гибридные распределенных неорганические нанокомпозиционные материалы на основе полиэтилена высокой плотности с низким содержанием высокодисперсного гидроксида алюминия (не более 30 вес.%) обладают пониженной горючестью и высокими механическими свойствами.

Ключевые слова: полиэтилен высокой плотности, мезопористые полимерные матрицы, *in situ* гидролиз, экологически безопасный антипирен, наночастицы гидроксида алюминия

HYBRID ORGANIC-INORGANIC NANOCOMPOSITE MATERIALS BASED ON HIGH-DENSITY POLYETHYLENE AND ALUMINIUM HYDROXIDE NANOPARTICLES: PREPARATION AND PROPERTIES

Arzhakova O.V.

PhD, Associate Professor, Senior Researcher,

Lomonosov Moscow State University, Faculty of Chemistry,

Russia, Moscow

Kopnov A.Yu.

Student

Lomonosov Moscow State University, Faculty of Chemistry,

Russia, Moscow

Yarusheva A. Yu.

PhD, Senior Researcher,

Lomonosov Moscow State University, Faculty of Chemistry,

Russia, Moscow

Дневник науки | www.dnevniknauki.ru | СМИ ЭЛ № ФС 77-68405 ISSN 2541-8327

Dolgova A.A.

PhD, Senior Researcher,

Lomonosov Moscow State University, Faculty of Chemistry,

Russia, Moscow

Abstract

Hybrid organo-inorganic nanocomposite materials based on high-density polyethylene and inorganic ecologically safe flame-retardant aluminum hydroxide were prepared according to the fundamental strategy of environmental crazing of polymers. Methods of introduction of aluminum nitrate as a precursor into mesoporous polymeric matrixes were advanced, and conditions for *in situ* basic hydrolysis of aluminum salt in mesopores of high-density polyethylene were determined. It has been shown that as a result of hydrolysis, needle-like nanoparticles of aluminum hydroxide are found to be uniformly distributed within the volume of the high-density polyethylene matrix. Hybrid organo-inorganic nanocomposite materials based on high-density polyethylene with low content of highly dispersed aluminum hydroxide (below 30 wt.%) are characterized by reduced flammability and high mechanical properties.

Key words: high-density polyethylene, mesoporous polymeric matrices, *in situ* hydrolysis, ecologically safe flame-retardant, aluminum hydroxide nanoparticles

Создание полимерных нанокомпозиционных материалов, обладающих пониженной горючестью и хорошими физико-механическими свойствами, на основе крупнотоннажных промышленно выпускаемых полимеров является актуальной задачей науки о материалах. Наиболее распространенным и эффективным способом понижения горючести полимерных материалов является

Дневник науки | www.dnevniknauki.ru | СМИ ЭЛ № ФС 77-68405 ISSN 2541-8327

использование различных добавок — антипиренов, к которым относятся как неорганические, так и органические вещества, содержащие галогены, фосфор, азот, бор, металлы или сочетание данных элементов [4; 6]. В настоящее время особое значение приобретает поиск и применение экологически безопасных антипиренов, а также снижение их содержания в полимерном материале. Использование антипиренов в виде наночастиц с размерами до нескольких десятков нанометров представляют особый интерес, т.к. эффективность действия антипирена возрастает cувеличением площади поверхности, которая обеспечивает лучший контакт между наполнителем и полимерной матрицей [5; 10].

Гидроксид алюминия является экологически безопасным и недорогим антипиреном с низкой токсичностью [5; 7]. При воздействии высоких температур на полимерный материал, содержащий гидроксид алюминия, происходит эндотермический процесс разложения гидроксида металла, что сопровождается выделением воды и поглощением тепла, приводит к понижению температуры на поверхности горящего полимера и к ослаблению действия кислорода.

В связи с тем, что гидроксид алюминия не растворим в воде и в большинстве органических растворителях, используемые в настоящее время методы его введения в полимеры состоят в смешении с расплавами полимеров и последующим формованием полимерных изделий в виде пленок, волокон и пр. Для повышения огнестойкости необходимо введение в полимер более 50 вес.% гидроксида алюминия, что снижает механические свойства получаемых нанокомпозиционных полимерных материалов [8; 11].

В данной работе предложен способ получения гибридных органонеорганических нанокомпозиционных материалов пониженной горючести на основе полиэтилена высокой плотности (ПЭВП) с низким содержанием экологически безопасного неорганического антипирена гидроксида алюминия с использованием универсальной стратегии крейзинга полимеров [2; 3; 9].

В качестве исходного полимера использовали промышленные пленки ПЭВП толщиной 60 мкм (Россия) со степенью кристалличности ~60 %. Мезопористые матрицы на основе ПЭВП получали при деформировании пленок ПЭВП с постоянной скоростью по механизму межкристаллитного крейзинга при комнатной температуре в присутствии экологически безопасных эмульсий типа масло-в-воде (МВ эмульсии) с высоким содержанием воды (более 95%) в качестве физически активной жидкой среды (ФАЖС) [1]. Установлено, что максимальное значение объемной пористости ~45 об.% реализуется при степени вытяжки ПЭВП, равной 200%; диаметр пор, определенный методом проницания жидкостей под действием градиента давления [2], составляет ~7 нм. Для дальнейших исследований использовали образцы ПЭВП, деформированные в ФАЖС на 200%. Для стабилизации мезопористой структуры ПЭВП и сохранения открытой пористости в деформированных образцах проводили полное удаление жидкой среды из объема полимера в изометрических условиях и отжиг при 110°С в течение 30 минут [1].

В качестве прекурсора для введения в стабильные открытопористые полимерные матрицы на основе ПЭВП и формирования гидроксида алюминия при последующем *in situ* гидролизе использовали шестиводный нитрат алюминия. Нитрат алюминия в ПЭВП вводили при пассивном влажном импрегнировании стабильных мезопористых ПЭВП матриц при их пропитке насыщенным раствором нитрата алюминия в этиловом спирте. Для этого стабильные пористые пленки ПЭВП, полученные после деформирования на 200% в экологически безопасной МВ эмульсии с высоким содержанием воды, помещали в насыщенный раствор нитрата алюминия в этаноле на 1 час и высушивали в вакуумном шкафу

до постоянного веса. Содержание нитрата алюминия в мезопористой матрице ПЭВП, определенное гравиметрически, составляет ~27-30 вес.%.

Для исследований структуры гибридных органо-неорганических нанокомпозиционных материалов методом просвечивающей электронной микроскопии (ПЭМ) образцы готовили в виде ультратонких срезов с использованием алмазного ножа по методике [2]. ПЭМ микрофотографии получены на микроскопе LEO-912 AB OMEGA (Carl Zeiss, Германия). На электронограмме образца ПЭВП (рис. 1a) наблюдаются рентгеновские рефлексы, отвечающие межплоскостным расстояниям 2.94, 2.61, 1.96 и 1.68 Å, что соответствует кристаллической решетке гидрата нитрата алюминия [11]. Показано, что при введении нитрата алюминия в ПЭВП матрицы происходит формирование наночастиц нитрата алюминия, которые равномерно распределены в объеме полимера (рис. 1б). Наночастицы нитрата алюминия имеют сферическую форму с размером ~5-20 нм.

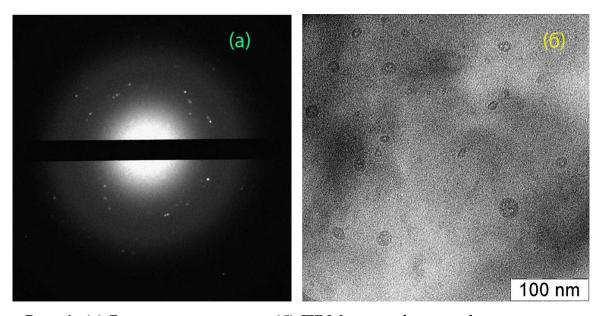


Рис. 1. (а) Электронограмма и (б) ПЭМ микрофотография ультратонкого среза мезопористой пленки ПЭВП, содержащей наночастицы нитрата алюминия.

Определены условия проведения *in situ* основного гидролиза нитрата алюминия в мезопорах матрицы ПЭВП. Поскольку гидроксид алюминия является типичным амфотерным гидроксидом, то при гидролизе в присутствии сильных щелочей, например, гидроксида натрия или калия, протекает также побочная реакция с образованием гидроксоалюминатов, что значительно снижает выход гидроксида алюминия. В качестве основной среды для проведения эффективного гидролиза использовали водный раствор аммиака (рН 8-10). Гидролиз нитрата алюминия в присутствии водного раствора аммиака протекает по схеме:

$$Al(NO_3)_3 + 3NH_3 \cdot H_2O \rightarrow Al(OH)_3 \downarrow + 3NH_4NO_3$$

Установлено, что после проведения *in situ* основного гидролиза нитрата алюминия на электронограмме мезопористой ПЭВП пленки присутствуют рентгеновские рефлексы, соответствующие межплоскостным расстояниям 2.36, 2.54, 2.38 и 1,55 Å (рис.2 а), которые являются типичными для кристаллической решетки гидроксида алюминия [11].

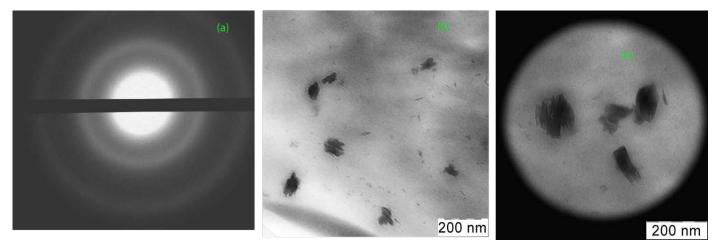


Рис. 2. (a) Электронограмма и (б, в) ПЭМ микрофотографии ультратонкого среза мезопористой пленки ПЭВП, содержащей наночастицы гидроксида алюминия.

В результате гидролиза под действием щелочной среды в мезопористой матрице ПЭВП происходит формирование наночастиц гидроксида алюминия

асимметричной игольчатой формы (рис. 2 б,в), равномерно распределенных в объеме полимера. В мезопористой матрице ПЭВП гидроксид алюминия присутствует как в виде отдельных наночастиц, так и в виде агломератов. Размер отдельных наночастиц варьируется от ~15 до ~45 нм в длину и от ~7 до ~15 нм в ширину. Содержание наночастиц гидроксида алюминия в матрице ПЭВП после *in situ* гидролиза в присутствии водного раствора аммиака составляет ~24-27 вес.%.

Таким образом, получены гибридные органо-неорганические нанокомпозиционные материалы на основе мезопористых полимерных матриц ПЭВП с наночастицами гидроксида алюминия, определены условия проведения эффективного основного гидролиза нитрата алюминия до гидроксида алюминия, установлены характер распределения, форма и размер наночастиц нитрата алюминия и гидроксида алюминия в мезопористых матрицах ПЭВП.

На заключительном этапе работы проведена оценка горючести полученных гибридных органо-неорганических нанокомпозиционных материалов на основе ПЭВП и наночастиц гидроксида алюминия с использованием стандартного метода UL 94 (Underwriters Laboratories), который предусматривает проверку способности полимерных материалов угасать после обработки пламенем. Для испытаний указанным методом используют полимерные образцы толщиной в несколько миллиметров. В данной работе нанокомпозиционные материалы получены на основе тонких пленок ПЭВП с исходной толщиной 60 мкм, в связи с чем метод UL 94 может быть использован лишь для приблизительной оценки горючести полученных нанокомпозиционных материалов, поскольку при уменьшении толщины образцов существенно уменьшается время их прогрева, в результате чего наблюдается отклонение величины кислородного индекса от истинного значения. Установлено, что при испытаниях в режиме вертикального пламени полученный нанокомпозиционный полимерный материал на основе ПЭВП и наночастиц гидроксида алюминия не поддерживает горение. Важно отметить, что Дневник науки | www.dnevniknauki.ru | СМИ ЭЛ № ФС 77-68405 ISSN 2541-8327

при этом происходит формирование кокса (рис. 3а). На рисунке 3 (б,в) представлены фотографии кокса, полученные методом сканирующей электронной микроскопии (СЭМ). При внесении исследуемых образцов в вертикальное пламя не образуются горящие капли, которые являются дополнительным источником возгорания.

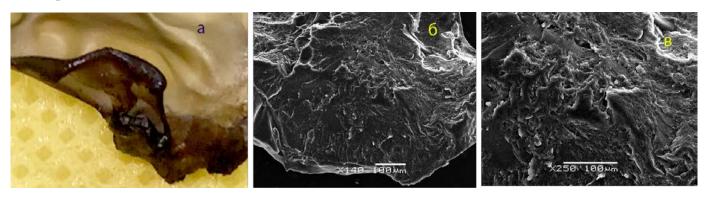


Рис. 3. (а) Фотография нанокомпозиционного материала на основе ПЭВП и наночастиц гидроксида алюминия после испытаний на негорючесть в режиме вертикального пламени и (б, в) СЭМ микрофотографии коксового остатка.

Установлено, что механические свойства полученных нанокомпозиционных полимерных материалов с наночастицами гидроксида алюминия снижаются не более, чем на 20% по сравнению с исходным ПЭВП: модуль упругости уменьшается на ~15-20%, а деформация при разрыве на воздухе составляет ~400-450%.

Таким образом, с использованием универсальной стратегии крейзинга полимеров получены гибридные органо-неорганические нанокомпозиционные материалы на основе мезопористых полимерных матриц ПЭВП и наночастиц экологически безопасного неорганического антипирена гидроксида алюминия. Определены условия проведения эффективного *in situ* основного гидролиза нитрата алюминия до гидроксида алюминия в мезопористых ПЭВП матрицах. В результате *in situ* основного гидролиза соли алюминия происходит формирование

наночастиц гидроксида алюминия асимметричной игольчатой формы, равномерно распределенных в объеме ПЭВП матрицы. Полученные нанокомпозиционные материалы на основе ПЭВП с низким содержанием (не более 30 вес.%) неорганического антипирена гидроксида алюминия в высокодисперсном состоянии обладают пониженной горючестью и высокими механическими характеристиками.

Исследование выполнено при финансовой поддержке Российского научного фонда, проект N = 20-13-00178.

Библиографический список:

- 1. Аржакова О.В. Крейзинг пленок политетрафторэтилена в присутствии экологически безопасных жидких сред на основе двухфазных эмульсий типа масло-в-воде с высоким содержанием воды / О.В. Аржакова, А.Ю. Копнов, А.А. Долгова, А.Л. Волынский // Дневник науки. 2019. № 11. С. 1–20.
- 2. Arzhakova O.V. Mechanoresponsive hard elastic materials based on semicrystalline polymers: From preparation to applied properties / O.V. Arzhakova, A.A. Dolgova, A.Yu. Yarysheva, I.I. Nikishin, A.L. Volynskii // ACS Applied Polymer Materials. $2020. \text{Vol. } 2. \text{N} \underline{0} 6. \text{P. } 2338-2349.$
- 3. Arzhakova O.V. Environmental crazing and properties of mesoporous and nanocomposite materials based on poly(tetrafluoroethylene) films / O.V. Arzhakova, A. A. Dolgova, E. G. Rukhlya, A.L. Volynskii // Polymer. 2019. Vol. 161. P. 151–161.
- 4. Fink K. Flame retardants: Materials and Applications. Wiley-Scrivener, 2020. 376 p.

- 5. Hiremath P. Investigation on effect of aluminium hydroxide on mechanical and fire retardant properties of GFRP- hybrid composites // P. Hiremath, H.S. Arunkumar, M. Shettar // Materials Today: Proceedings. − 2017. − Vol.4. − № 10. − P. 10952-10956.
- 6. Hu Y., Wang X. (Eds.) Flame retardant polymeric materials: a Handbook. London, NY: CRC Press, Boca Raton, 2019 350 p.
- 7. Hornsby P.R. The application of magnesium hydroxide as a fire retardant and smoke-suppressing additive for polymers / P.R. Hornsby // Fire Mater. -1994. Vol. 18. No. P. 269-276.
- 8. Morgan A.B., Wilkie C.A. (Eds.) The non-halogenated flame retardant handbook. Salem, Massachusetts: Scrivener Publishing LLC, 2014 400 p.
- 9. Volynskii A.L. Surface phenomena in the structural and mechanical behaviour of solid polymers / A.L. Volynskii, N.F. Bakeev. London, New York: Taylor & Francis, 2016. 526 p.
- 10. Zong L. Synthesis of high dispersion and uniform nano-sized flame retardant-used hexagonal Mg(OH)2. / L. Zong, L. Li, J. Zhang, X. Yang, G. Lu, Z. Tang // J. Clust. Sci. 2016. Vol. 27. P.1831–1841.
- 11. Wilkie C.A., Morgan A.B. (Eds.) Fire retardancy of polymeric materials, 2nd Edition. London, NY: CRC Press, Boca Raton, 2010. 853 p.

Оригинальность 76%