УДК 614

DOI 10.51691/2541-8327 2023 12 31

ПУТИ СНИЖЕНИЯ НЕГАТИВНОГО ВОЗДЕЙСТВИЯ НЕФТЕПЕРЕРАБАТЫВАЮЩЕЙ И НЕФТЕХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ НА ОКРУЖАЮЩУЮ ПРИРОДНУЮ СРЕДУ

Паскарелов С.И.

Студент,

ИСОиП (филиал) ДГТУ в г. Шахты

 $Шахты, Россия^{1}$

Аннотация.

В работе рассматриваются основные вопросы, которые связаны с наличием выбросов и сбросов вредных веществ, получаемых в ходе технологических процессов в нефтеперерабатывающей и нефтехимической отраслях; установлены основные направления, по которым осуществляется снижение объемов выбросов вредных веществ; выявлены технологии, направленные на снижение выбросов в атмосферу, в том числе при факельном горении и переработке попутного нефтяного газа; определены основные пути снижения загрязненности водоемов от нефтепродуктов; установлены основные методы снижения образования твердых осадков в технологических установках.

Ключевые слова: технологии защиты, экологическая безопасность; нефтеперерабатывающая отрасль, нефтехимическая отрасль; выбросы; сбросы; снижение негативного воздействия.

WAYS TO REDUCE THE NEGATIVE IMPACT OF THE OIL REFINING AND PETROCHEMICAL INDUSTRIES ON THE ENVIRONMENT

Paskarelov S.I.

Student.

Siuaeni

¹ 1 Научный руководитель: Молев Михаил Дмитриевич, д-р. техн. наук, профессор кафедры «Строительство и техносферная безопасность», ИСОиП (филиал) ДГТУ в г. Шахты, Россия.

ISOiP (branch) of DSTU in Shakhty Shakhty, Russia

Abstract.

The paper considers the main issues related to the presence of emissions and discharges of harmful substances obtained during technological processes in the oil refining and petrochemical industries; identifies the main directions for reducing emissions of harmful substances; identifies technologies aimed at reducing emissions into the atmosphere, including during flare combustion and processing of associated petroleum gorenje gas; the main ways to reduce pollution of reservoirs from petroleum products have been identified; The main methods of reducing the formation of solid precipitation in technological installations have been established.

Key words: protection technologies, environmental safety; oil refining industry, petrochemical industry; emissions; discharges; reduction of negative impact.

В современной реальности осуществляется очень широкое распространение технологий, требующих использования нефти и продуктов ее переработки, В c связи чем происходит интенсивное развитие нефтеперерабатывающей и нефтехимической отраслей. Одной из ключевых проблем, связанных с данными отраслями хозяйства, является значительный объем вредных веществ, образуемый в результате их работы и оказывающий влияние на загрязнение различных компонентов окружающей среды. Факторами, обусловливающими опасность веществ, которые применяются ходе технологического процесса переработки нефти и образования химических соединений ee взрывопожароопасность, на основе, являются легковоспламенимость, токсичность, а также работа оборудования в условиях повышенных температур.

Для рассмотрения вопроса о снижении объема выбросов вредных веществ, образуемых в результате работы нефтеперерабатывающих и нефтехимических

Дневник науки | www.dnevniknauki.ru | СМИ ЭЛ № ФС 77-68405 ISSN 2541-8327

производств, необходимо установить характер воздействия отдельных технологических процессов на образование вредных веществ и загрязнение отдельных компонентов окружающей среды. Промышленность использует технологии для очистки подаваемой и обработанной воды и ее безопасного использования [1]. Технологические процессы нефтеперерабатывающей и нефтехимической отрасли и их влияние на окружающую среду представлено в таблице 1.

Таблица 1 — Технологические процессы нефтеперерабатывающей и нефтехимической отрасли и их влияние на окружающую среду

Тауналагинаагна	Влияние на отдельные компоненты окружающей среды				
Технологические процессы	выбросы в	сбросы в водоемы	образование твердых		
	атмосферу	1	отходов		
Подготовка	Потери	Осуществляется	Отложение в		
нефти,	газообразных	переработка и	установках солей,		
обезвоживание и	углеводородов	повторное	трудно поддающихся		
обессоливание	на этапе	использование воды для	переработке		
	стабилизации	подогрева			
	нефти	электрообессоливающих			
		установок,			
		последующий сброс			
		сточных вод после ее			
		очистки			
Атмосферная и	Выделение серы	Образование воды,			
вакуумная	и ее оксидов	содержащей примеси			
перегонка		серы; повышение	-		
		кислотности сточных			
T.C.	0.5	вод			
Крекинг,	Образование				
гидрогенизация	попутного				
и изомеризация	нефтяного газа и				
	последующее				
	его факельное	-	-		
	горение, образование				
	катализаторной				
	пыли				
Хранение	Потери		Образование		
нефтепродуктов	газообразных		нефтешлама,		
	углеводородов		асфальтопарафинового		
	при хранении и	-	осадка, необходимость		
	транспортировке		строительства полигона для		
			полигона для захоронения отходов		
	l .		ошлоронония отподов		

Характеристики влияния отдельных технологических процессов на состояние отдельных компонентов окружающей среды позволяют сделать вывод о необходимости применения различных мероприятий, направленных на снижение объемов выбросов и сбросов вредных веществ, а также снижения объема образуемых отходов. Данное обстоятельство подтверждает необходимость очистки воздуха и сточных вод от загрязнений. Вредные вещества, образуемые в результате работы нефтеперерабатывающих и нефтехимических заводов, и их влияние на компоненты окружающую среду представлены в таблице 2.

Таблица 2 — Вредные вещества, образуемые в результате работы нефтеперерабатывающих и нефтехимических заводов, и их влияние на окружающую среду [2]

	Влияние на отдельные компоненты окружающей			
Технологические процессы	среды			
технологические процессы	выбросы в	сбросы в	образование твердых	
	атмосферу	водоемы	отходов	
Азота диоксид	+	-	-	
Аммонийный ион	+	+	-	
Аммиак	+	-	-	
Ацетон	+	-	-	
Бензин	+	-	+	
Бензол	+	+	+	
Бенз(а)пирен	+	+	+	
БПК (полн.)	-	+	-	
1,3-Бутадиен	+	-	-	
Взвешенные вещества	+	+	-	
Изопропилбензол	+	-	+	
Кадмий	+	+	+	
Ксилол	+	-	+	
Метан	+	-	-	
Мышьяк	-	+	-	

ЭЛЕКТРОННЫЙ НАУЧНЫЙ ЖУРНАЛ «ДНЕВНИК НАУКИ»

Никель	+	+	+
Нитриты	-	+	+
Нефтепродукты	-	+	+
Окись этилена	+	-	-
Серы диоксид	+	-	-
Сероводород	+	+	-
Свинец	+	+	+
Сульфаты	-	+	+
Стирол	+	-	+
Пыль катализаторов	+	-	-
Тетрахлорметан	-	+	+
Толуол	+	+	+
Фенол	+	+	-
Формальдегид	+	-	-
ХПК	-	+	-
Хром (IV)	+	+	+
Хлориды	-	+	+
Углерода оксид	+	-	-
Углеводороды предельные	+	-	-
Углеводороды хлорированные	+	-	-
Этилбензол	+	+	-

Представленные данные позволяют определить значимость снижения выбросов веществ по всем компонентам окружающей среды, в связи с чем необходимо рассмотреть технологии, направленные на минимизацию выбросов.

Основными путями снижения образования вредных веществ в результате работы нефтеперерабатывающих и нефтехимических заводов являются:

 в отношении выбросов в атмосферу: изменение технологического режима работы электрообессоливающих установок, атмосферно-вакуумных установок; повышение герметичности ректификационных колонн и резервуаров для хранения нефтепродуктов; выкачка остаточных газообразных углеводородов

производственного процесса; обеспечение постоянства после окончания температурного режима хранения нефтепродуктов И недопущение возникновения высокого колебания температуры; снижение объема сжигания нефтяного газа и его попутного переработка; формирование системы мониторинга за содержанием вредных веществ в воздухе; обеспечение автоматического контроля выбросов на основе предсказывающих систем [3]; установка систем очистки, позволяющих снизить концентрацию вредных веществ до уровня ПДК; снижение объема времени транспортировки нефтепродуктов; изменение устройства резервуаров хранения нефтепродуктов с целью недопущения выбросов вредных веществ в атмосферу;

- в отношении сбросов сточных вод и нефтепродуктов в гидросферу: многократная очистка воды с целью ее использования для подогрева технологических установок; обеспечение очистки сточных вод посредством удаления примесей серы и повышения рН воды; применение сорбентов для очистки воды от нефтепродуктов [4]; недопущение сбросов нефти и продуктов ее переработки из резервуаров хранения;
- в отношении образования твердых отходов и загрязнения литосферы: формирование автоматизированных систем очистки резервуаров хранения нефтепродуктов от твердых осадков; применение методов борьбы с отложениями асфальтосмолопарафиновых веществ (АСП-В) [5]; возможность переработки нефтешлама в другие нефтепродукты; недопущение разлива нефтепродуктов на поверхность земли в ходе ее хранения или транспортировки.

Таким образом, нефтеперерабатывающая и нефтехимическая отрасль действительно оказывает значительное влияние на состояние окружающей среды в результате выброса значительного количества химических соединений, обладающих опасными свойствами. Снижение объема выбросов данных веществ зависит от большого числа факторов, таких как имеющиеся технологии переработки нефти и производства химических соединений; конструкционные особенности технологического оборудования и резервуаров; технические

характеристики используемых аппаратов для пылегазочистки и очистки сточных вод от загрязнений. Внедрение мероприятий, направленных на снижение объемов выбросов, должно обеспечить, с одной стороны, более полное и качественное использование ресурсов за счет использования процессов переработки вторичных ресурсов, а следовательно, и снижения объема утилизируемых отходов, а, с другой стороны, формирование экологической и производственной безопасности при осуществлении технологического процесса в нефтеперерабатывающей и нефтехимической отраслях.

Библиографический список:

- 1. Кравцов А.С., Седельникова В.А., Чижов К.А., Князева А.Э., Волков И.В. Влияние процесса нефтепереработки на состояние окружающей среды // Московский экономический журнал 2021. № 9. С. 187-194. URL: https://cyberleninka.ru/article/n/vliyanie-protsessa-neftepererabotki-na-sostoyanie-okruzhayuschey-sredy (дата обращения: 20.12.2023).
- 2. Валеев Т.К., Сулейманов Р.А., Рахманин Ю.А., Малышева А.Г., Рахматуллина Л.Р. Методические подходы к гигиенической оценке объектов окружающей среды и обоснованию профилактических мероприятий на территориях размещения предприятий нефтехимии и нефтепереработки // Гигиена и санитария 2019. № 98(9). С. 923-929. URL: https://cyberleninka.ru/article/n/metodicheskie-podhody-k-gigienicheskoy-otsenke-obektov-okruzhayuschey-sredy-i-obosnovaniyu-profilakticheskih-meropriyatiy-na (дата обращения: 20.12.2023).
- 3. Мешалкин В.П., Скобелев Д.О., Попов А.Ю. Автоматический контроль выбросов: ОПЫТ применения предсказывающих систем // \mathbf{C} . 2020. Νo 9-10. 15-21. URL: Компетентность https://cyberleninka.ru/article/n/avtomaticheskiy-kontrol-vybrosov-opyt-primeneniyapredskazyvayuschih-sistem (дата обращения: 21.12.2023).

- 4. Галиуллина Ю.Р., Кулагин А.А. Определение степени очистки воды после применения нефтепоглощающих сорбентов // Экология урбанизованных территорий 2021. № 1. С. 29-32. URL: https://cyberleninka.ru/article/n/opredelenie-stepeni-ochistki-vody-posle-primeneniya-neftepogloschayuschih-sorbentov (дата обращения: 21.12.2023).
- 5. Валиев Д.З., Кемалов А.Ф., Кемалов Р.А. Анализ современного состояния проблемы предотвращения образования и утилизации отложений асфальтопарафиновых веществ в нефтяной отрасли // Экспозиция Нефть Газ 2019. № 2 (69). С. 103-108. URL: https://cyberleninka.ru/article/n/analiz-sovremennogo-sostoyaniya-problemy-predotvrascheniya-obrazovaniya-i-utilizatsii-otlozheniy-asfaltosmoloparafinovyh-veschestv (дата обращения: 21.12.2023).

Оригинальность 84%