УДК 539.32

ТОЧНОСТЬ ОПРЕДЕЛЕНИЯ ЭФФЕКТИВНЫХ УПРУГИХ ХАРАКТЕРИСТИК ОДНОНАПРАВЛЕННОГО СТЕКЛОВОЛОКНА С ТЕТРАГОНАЛЬНОЙ УКЛАДКОЙ В ЗАВИСИМОСТИ ОТ РАЗМЕРА РАССМАТРИВАЕМОЙ ЯЧЕЙКИ

Протопова Ю. Д.

Студент 3 курса, Аэрокосмического факультета,

Кафедра "Механика композиционных материалов и конструкций",

Пермский национальный исследовательский политехнический университет,

Пермь, Россия

Кареба П. Н.

Студент 3 курса, Аэрокосмического факультета,

Кафедра "Механика композиционных материалов и конструкций",

Пермский национальный исследовательский политехнический университет,

Пермь, Россия

Зобнина А. А.

Студент 3 курса, Аэрокосмического факультета,

Кафедра "Механика композиционных материалов и конструкций",

Пермский национальный исследовательский политехнический университет,

Пермь, Россия

Выймова С. Д.

Студент 3 курса, Аэрокосмического факультета,

Кафедра "Механика композиционных материалов и конструкций",

Пермский национальный исследовательский политехнический университет,

Пермь, Россия

Аннотация

С помощью программного обеспечения ANSYS выполнен расчет полей напряжений и деформаций однонаправленного композиционного материала с тетрагональной структурой. Полученные данные использованы для вычисления эффективных упругих характеристик - модуля Юнга и модуля сдвига. Для расчета был выбран композиционный материал с эпоксидной матрицей ЭДТ-10, армированный изотропным стеклянным волокном. Проведено сравнение двух расчетных моделей с целью уточнения оптимального размера ячейки.

Ключевые слова: стеклопластик, эффективные упругие характеристики, композиционный материал, расчетная модель, ANSYS APDL.

ACCURACY OF DETERMINING THE EFFECTIVE ELASTIC CHARACTERISTICS OF UNIDIRECTIONAL FIBERGLASS WITH TETRAGONAL STACKING DEPENDING ON THE SIZE OF THE CONSIDERED CELL

Protopopova Y. D.

3th year student, Aerospace Faculty,

Department of "Mechanics of Composite Materials and Structures",

Perm National Research Polytechnic University,

Perm, Russia

Kareba P. N.

3th year student, Aerospace Faculty,

Department of "Mechanics of Composite Materials and Structures",

Perm National Research Polytechnic University,

Perm, Russia

Zobnina A. A.

3th year student, Aerospace Faculty,

Department of "Mechanics of Composite Materials and Structures",

Perm National Research Polytechnic University,

Perm. Russia

Vyimova S. D.

3th year student, Aerospace Faculty,

Department of "Mechanics of Composite Materials and Structures",

Perm National Research Polytechnic University,

Perm, Russia

Abstract

The ANSYS software was used to calculate the stress and strain fields of a unidirectional composite material with a tetragonal structure. The data obtained are used to calculate the effective elastic characteristics - Young's modulus and shear modulus. A composite material with an EDT-10 epoxy matrix reinforced with isotropic glass fiber was chosen for the calculation. A comparison of two computational models was carried out in order to select the optimal cell size.

Keywords: fiberglass, effective elastic characteristics, composite material, calculation model, ANSYS APDL.

Введение

КМ - композиционные материалы представляют собой материалы с высокопрочными волокнами разной природы из стекловолокна, углерода, полимеров и др., также в состав КМ входит матрица, часто это эпоксидная смола, она выполняет роль связующего, с помощью которой КМ становится единым целым и обретает свои уникальные свойства. Основная задача матрицы — это равномерное рассредоточение действующих напряжений по всему объему Дневник науки | www.dnevniknauki.ru | СМИ ЭЛ № ФС 77-68405 ISSN 2541-8327

композита, а также достижение равных усилий на волокно. Уникальность композиционных материалов заключается в том, что на этапе проектирования конструкции, мы можем задавать те свойства, которые требуются в той сфере, в которой будет эксплуатироваться наша конструкция.

В наше время активно ведутся разработки в области создания новых полимерных композиционных материалов. В статье [7] авторы акцентируют внимание на то, что полимерные композиционные материалы, разработанные на основе матрицы из полимера, способны отвечать повышающимся требованиям к конструкциям. Авторы статей [6, 11] показали перспективы и возможность реализации замены привычных нам материалов, например, таких как алюминиевые и стальные сплавы, на ПКМ в авиационной промышленности, изза их высокой прочности и невероятно низкой массы, что является важным фактором в авиации. Композиционные материалы можно разделить на две большие группы: термореактивные и термопластичные, к какой из этих групп нужно отнести исследуемый композит будет зависеть от типа матрицы.

Стеклопластик - композиционный конструкционный материал, основными преимуществами прочность, которого являются его экологичность, долговечность, огнеупорность, легкость и низкая теплопроводность, а также относительно низкая плотность. Стеклопластики делают из стеклянных волокон различных типов и полимерных матриц, например, эпоксидных. Тонкие волокна придают высокопрочные стеклянные прочность И стеклопластику. Связующее обеспечивает материалу цельность и защищает волокна от внешних факторов, способствует эффективному применению механических свойств волокон и равномерному распределению нагрузок между волокнами, а также берёт часть нагрузок на себя. Помимо этого, материал может формироваться в изделия разной формы или размера благодаря связующему.

Для обработки результатов исследования композитов и предсказания их свойств опираются на различные модели и методы моделирования. Огромную роль в этом плане играют модель эффективной среды [2, 5] и метод конечных Дневник науки | www.dnevniknauki.ru | СМИ ЭЛ № ФС 77-68405 ISSN 2541-8327

элементов [3]. Авторы статей [1, 9, 10] обратили внимание на то, что на свойства композита заметное влияние оказывает объемное соотношение его компонентов. Для определения свойств эффективных характеристик композиционного материала, не учитывая слияние геометрии структурно-неоднородной среды, авторы статьи [8] выдвинули предположение по улучшению эффективных модулей типа Хашина-Штрикмана изотропного композита. В ДЛЯ представленной работе исследуются зависимости эффективных композитов от объемного содержания волокон, с помощью программного комплекса ANSYS рассматривается распределение полей напряжений и деформаций в одной четвертой ячейки периодичности и одной целой ячейки периодичности материала. В программном комплексе ANSYS реализуется метод конечных элементов, который является очень удобным для исследования композитов из-за его достоинств:

- характеристики материалов взаимосвязанных элементов могут быть разными. Что даёт нам возможность использовать данный метод к телам, которые состоят из двух и более материалов;
- метод применяется также и для областей с изогнутой формой границы, так как её можно аппроксимировать через прямолинейные элементы или описать при помощи криволинейных элементов.
- при необходимости есть возможность расширить или разделить на более мелкие компоненты сеть разбиения области, благодаря переменным размерам элементов;
- МКЭ позволяет проанализировать не только граничные условия с разрывной нагрузкой на поверхности, но и смешанные граничные условия.

Существенным минусом этого метода является то, что необходимо составлять сложные алгоритмы вычисления, что ведёт за собой высокую стоимость данных работ.

Постановка задачи

Данная работа посвящена определению эффективных упругих характеристик однонаправленного стеклопластика на разных расчетных областях. В качестве изотропной эпоксидной матрицы использовалась матрица марки ЭДТ–10. В качестве армирующего компонента использовались стеклянные изотропные волокна. Работа выполнена в рамках НИРС [4].

При исследовании механического поведения композитов элементарный объем материала рассматривается как среда с периодической структурой, поля деформирования тоже являются периодическими, т.е. для расчёта напряжений и деформаций и вычисления эффективных свойств можно рассматривать периодические ячейки, учитывая, что осредненные по ячейкам напряжения должны быть равны заданным макроскопическим.

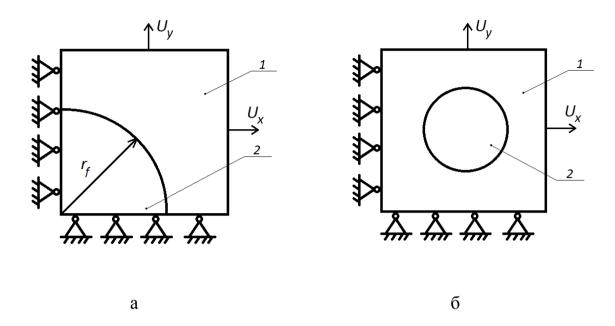
В качестве расчетной области при тетрагональной схеме укладки может рассматриваться ячейка периодичности, включающая в себя как четверть поперечного сечения волокна, так и целое сечение.

Рассмотрим задачу для стохастического однородного тела объёмом V с границей Γ , состоящую из замкнутой системы уравнений (1)

$$\sigma_{ij,j}(r) = 0 ,$$

$$\sigma_{ij}(r) = C_{ijmn} \varepsilon_{mn} ,$$

$$\varepsilon_{ij}(r) = 1/2 * [u_{i,j}(r) + u_{j,i}(r)] ,$$
(1)


и граничных условий (2)

$$u_i(r)|_{\Gamma} = \mathbf{u}_i^{\mathbf{0}}, \tag{2}$$

где C_{ijmn} — тензор модулей упругости; ε_{ij} — тензор малых деформаций Коши; $u_i(r)$ — структурные перемещения, заданные на границе Γ ; u_i — заданный вектор перемещений [12].

В качестве расчетных областей (рисунок 1) выбраны одна четвертая ячейки периодичности однонаправленного композита тетрагональной укладкой ячейка круглых волокон В матрице И одна целая периодичности Дневник науки | www.dnevniknauki.ru | СМИ ЭЛ № ФС 77-68405 ISSN 2541-8327

однонаправленного композита тетрагональной укладкой круглых волокон в матрице.

Реализация в Ansys APDL

Для расчета полей напряжений и деформаций КМ в главном меню ANSYS выбираем структурный тип анализа. Выбираем тип используемого элемента solid 8 node 183. Задаем свойства материалов и их характеристики (модуль Юнга и коэффициент Пуассона), которые приведены в таблице 1. Скалярные параметры задаются в меню утилит:

- сторона a = 1;
- число $\pi = 3,14;$
- объемная доля волокна $V_f = 0,1...0,7;$
- волокно задаём как четверть окружности радиусом r_f по формуле (3)

$$r_f = 2 \cdot a \cdot \sqrt{\frac{v_f}{\pi}} \,. \tag{3}$$

Для второй расчетной области сторону ячейки принимаем a=2, волокно задаём как окружность радиусом r_f по формуле (4)

$$r_f = a \cdot \sqrt{\frac{v_f}{\pi}} \,. \tag{4}$$

Затем разбиваем конструкцию на конечные элементы (рисунки 2,3) и задаем граничные условия в перемещениях: вся левая вертикальная грань имеет перемещение равное нулю по оси X; вся нижняя горизонтальная грань имеет перемещение равное нулю по оси Y; к правой вертикальной грани будет приложено перемещение $U_x = 0.01 \cdot a$ для случая растяжения, $U_x = -0.01 \cdot a$ для случая сдвига; к верхней горизонтальной грани будет приложено перемещение $U_v = 0.01 \cdot a$.

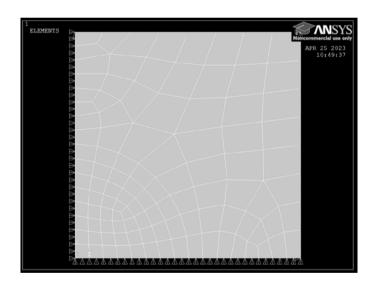


Рис. 2 Разбиение четверти ячейки периодичности на конечные элементы и задание граничных условий Авторская разработка

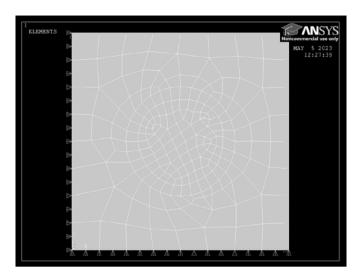


Рис. 3 Разбиение ячейки периодичности на конечные элементы и задание граничных условий Авторская разработка

Диаграммы полей напряжений и деформаций представлены на рисунках 4,

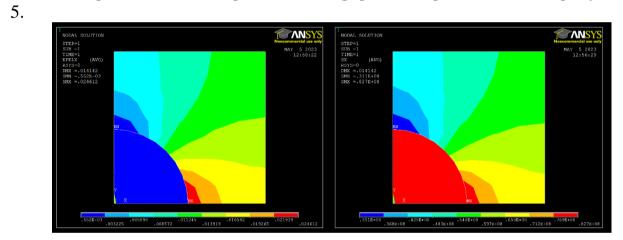


Рис. 4 Диаграммы полей напряжений и деформаций для одной четверти ячейки Авторская разработка

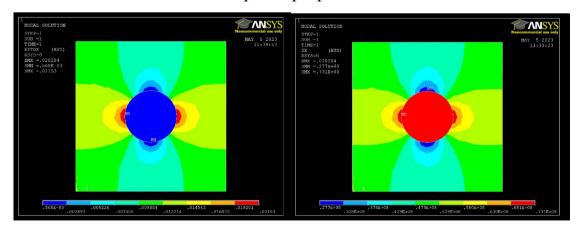


Рис. 5 Диаграммы полей напряжений и деформаций для одной ячейки

Авторская разработка

Физико-механические характеристики структурных компонентов Построим зависимость эффективных свойств композитов от объемного содержания волокон.

Физико-механические характеристики компонентов стеклопластика представлены в таблице 1.

Таблица 1 — Физико-механические характеристики компонентов стеклопластика

Характеристики	Стеклянные изотропные волокна	Эпоксидная матрица ЭДТ-10
Модуль Юнга Е, ГПа	100	2,91
Коэффициент Пуассона v	0,21	0,356

Для расчета эффективных характеристик рассматриваемого материала использовались инструменты ANSYS. После решения в главном меню в списке Postproc создаем новую таблицу, используя операцию Define Table. Добавляем в таблицу значения напряжений (SX), деформаций (Epto X), а также объем ячейки (VOLU). Умножаем напряжения и деформации на объем, чтобы найти макронапряжения и макродеформации. После этого найдем сумму всех полученных значений макронапряжений и макродеформаций используя Sum of Each Item. По закону Гука разделяем полученное значение напряжений на деформации, получая эффективную характеристику. Результаты расчетов эффективных характеристик в зависимости от объемной доли стекловолокна представлены в таблицах 2, 3.

Таблица 2 – Эффективные характеристики стеклопластика, полученные на одной четверти ячейки

V_f	V_m	Е, ГПа	G, ГПа
0,1	0,9	5,22	2,52
0,2	0,8	6,08	3,05
0,3	0,7	7,17	3,82
0,4	0,6	8,63	4,96
0,5	0,5	10,7	6,69
0,6	0,4	13,93	9,61
0,7	0,3	18,9	15,52

Таблица 3 – Эффективные характеристики стеклопластика, полученные на одной ячейке

V_f	V_m	Е, ГПа	G, ГПа
0,1	0,9	5,22	2,14
0,2	0,8	6,08	3,05
0,3	0,7	7,17	3,82
0,4	0,6	8,62	4,96
0,5	0,5	10,66	6,68
0,6	0,4	13,94	9,57
0,7	0,3	19,04	15,37

Построим зависимости эффективных модуля Юнга и модуля сдвига от объемного содержания волокна. Графики зависимостей представлены на рисунках 6, 7.

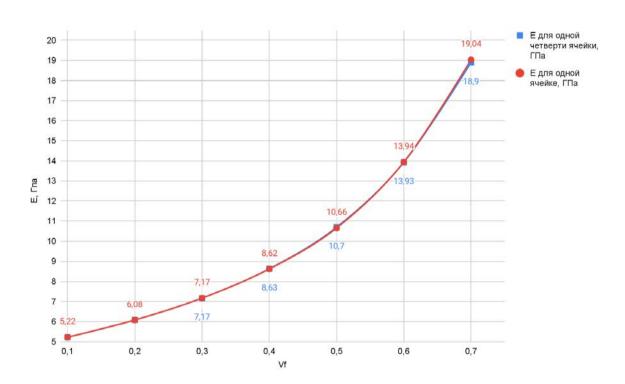


Рис. 6 Зависимость модуля Юнга от объемного содержания волокна Авторская разработка

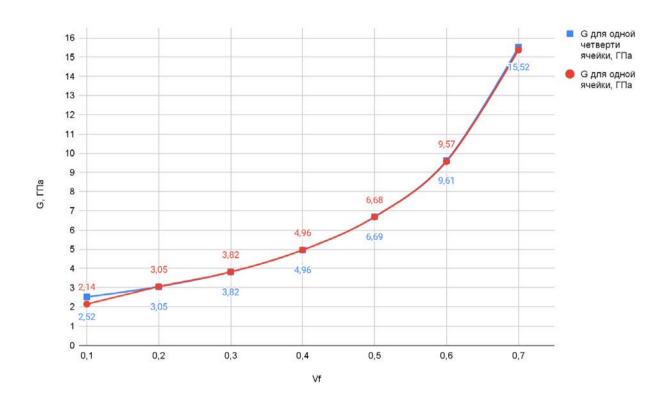


Рис. 7 Зависимость модуля сдвига от объемного содержания волокна Авторская разработка

Заключение

Сравнив результаты расчетов эффективных характеристик рассматриваемых ячеек периодичности материала, можно сделать вывод, что для расчета эффективных характеристик композиционного материала с тетрагональной схемой укладки волокон достаточно использовать только четверть ячейки периодичности КМ. Такой выбор обусловлен быстротой и удобством построения геометрии в ПО ANSYS.

Библиографический список

- 1. Биткин В.Е., Жидкова О.Г., Комаров В.А. Выбор материалов для изготовления размеростабильных несущих конструкций // Вестн. Самар. ун-та. Аэрокосмическая техника, технологии и машиностроение. 2018. Т. 17, No 1. C. 100–117.
- 2. Корчагин С.А., Терин Д.В., Романчук С.П. Синергетика математических моделей для анализа композиционных материалов // Изв. высш. учеб. завед. Прикладная нелинейная динамика. 2015. Т. 23, No 3. С. 55–64.
- 3. Левин В.Е., Лапердина Н.А., Олегин И.П. Численный подход в определении упругих свойств однонаправленно армированных композитов // Научно-технический вестник Поволжья. 2019. No 11. C. 141–145.
- 4. Методические указания по проведению научно-исследовательской работы для студентов бакалавриата по направлению 22.03.01 «Материаловедение и технологии материалов» / Сост. Е.Ю. Макарова, Ю.В. Соколкин, А.А. Чекалкин. Пермь: Изд-во Перм. нац. исслед. политехн. ун-та, 2017. 40 с
- 5. Моделирование влияния оснастки на конечную форму изделий из полимерного композита / М.В. Козлов, С.В. Шешенин, И.В. Макаренко, Д.А. Белов // Вычислительная механика сплошных сред. 2016. Т. 9, No 2. С. 145–161.
- 6. Определение характеристик выносливости механической системы из композиционных материалов / А.И. Голованов, Д.В. Бережной, Е.В. Касумов,В.А. Шувалов // Учён. зап. Казан. ун-та. Сер.: Физическоматематические науки. 2016. Т. 158, No 3. C. 307–321.
- 7. Раскутин А. Е. Стратегия развития полимерных композиционных материалов // Авиационные материалы и технологии. 2017. No S. С.

344—348.DOI: 10.18577/2071-9140-2017-0-S-344-348 Дневник науки | www.dnevniknauki.ru | СМИ ЭЛ № ФС 77-68405 ISSN 2541-8327

- 8. Свеашков А.А., Куприянов Н.А., Манабаев К.К. Модификации эффективных модулей типа Хашина–Штрихмана для двухкомпонентного изотропного композита // Физическая мезомеханика. 2015. Т. 18, No 6. С. 57–65.
- 9. Советова Ю.В., Сидоренко Ю.Н., Скрипняк В.А. Многоуровневый подход к исследованию влияния объёмного соотношения компонентов волокнистого однонаправленного углепластика на его механические характеристики // Вестн. Том. гос. ун-та. Математика и механика. 2014. No 2(28). С. 77–89.
- 10. Соловьев А.Н., Зиборов Е.Н., Шевцов С.Н. Определение упругих свойств армированных композиционных материалов на основе конечно-элементного моделирования // Наука юга России. 2016. Т.12, No 2. С. 3–10.
- 11. Тимошков П.Н. Современные полимерные композиционные материалы для применения в авиационной технике // Полимерные композиционные материалы и производственные технологии поколения: материалы конф. М.:ВИАМ, 2018. С. 40–56.
- 12. Чекалкин А.А., Паньков А.А. Лекции по механике конструкций из композиционных материалов / Перм. гос. техн. ун-т. Пермь, 1999. 150 с.

Оригинальность 86%